Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS.

Identifieur interne : 002527 ( Main/Exploration ); précédent : 002526; suivant : 002528

Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS.

Auteurs : Eli Rodgers-Melnick [États-Unis] ; Mark Culp ; Stephen P. Difazio

Source :

RBID : pubmed:24015873

Descripteurs français

English descriptors

Abstract

BACKGROUND

The large-scale identification of physical protein-protein interactions (PPIs) is an important step toward understanding how biological networks evolve and generate emergent phenotypes. However, experimental identification of PPIs is a laborious and error-prone process, and current methods of PPI prediction tend to be highly conservative or require large amounts of functional data that may not be available for newly-sequenced organisms.

RESULTS

In this study we demonstrate a random-forest based technique, ENTS, for the computational prediction of protein-protein interactions based only on primary sequence data. Our approach is able to efficiently predict interactions on a whole-genome scale for any eukaryotic organism, using pairwise combinations of conserved domains and predicted subcellular localization of proteins as input features. We present the first predicted interactome for the forest tree Populus trichocarpa in addition to the predicted interactomes for Saccharomyces cerevisiae, Homo sapiens, Mus musculus, and Arabidopsis thaliana. Comparing our approach to other PPI predictors, we find that ENTS performs comparably to or better than a number of existing approaches, including several that utilize a variety of functional information for their predictions. We also find that the predicted interactions are biologically meaningful, as indicated by similarity in functional annotations and enrichment of co-expressed genes in public microarray datasets. Furthermore, we demonstrate some of the biological insights that can be gained from these predicted interaction networks. We show that the predicted interactions yield informative groupings of P. trichocarpa metabolic pathways, literature-supported associations among human disease states, and theory-supported insight into the evolutionary dynamics of duplicated genes in paleopolyploid plants.

CONCLUSION

We conclude that the ENTS classifier will be a valuable tool for the de novo annotation of genome sequences, providing initial clues about regulatory and metabolic network topology, and revealing relationships that are not immediately obvious from traditional homology-based annotations.


DOI: 10.1186/1471-2164-14-608
PubMed: 24015873
PubMed Central: PMC3848842


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS.</title>
<author>
<name sortKey="Rodgers Melnick, Eli" sort="Rodgers Melnick, Eli" uniqKey="Rodgers Melnick E" first="Eli" last="Rodgers-Melnick">Eli Rodgers-Melnick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, West Virginia, 26506, USA. stephen.difazio@mail.wvu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, West Virginia, 26506</wicri:regionArea>
<wicri:noRegion>26506</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Culp, Mark" sort="Culp, Mark" uniqKey="Culp M" first="Mark" last="Culp">Mark Culp</name>
</author>
<author>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24015873</idno>
<idno type="pmid">24015873</idno>
<idno type="doi">10.1186/1471-2164-14-608</idno>
<idno type="pmc">PMC3848842</idno>
<idno type="wicri:Area/Main/Corpus">002472</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002472</idno>
<idno type="wicri:Area/Main/Curation">002472</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002472</idno>
<idno type="wicri:Area/Main/Exploration">002472</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS.</title>
<author>
<name sortKey="Rodgers Melnick, Eli" sort="Rodgers Melnick, Eli" uniqKey="Rodgers Melnick E" first="Eli" last="Rodgers-Melnick">Eli Rodgers-Melnick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, West Virginia, 26506, USA. stephen.difazio@mail.wvu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, West Virginia, 26506</wicri:regionArea>
<wicri:noRegion>26506</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Culp, Mark" sort="Culp, Mark" uniqKey="Culp M" first="Mark" last="Culp">Mark Culp</name>
</author>
<author>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Computational Biology (methods)</term>
<term>Gene Duplication (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Mice (MeSH)</term>
<term>Populus (genetics)</term>
<term>Protein Interaction Mapping (methods)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Software (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Biologie informatique (méthodes)</term>
<term>Cartographie d'interactions entre protéines (méthodes)</term>
<term>Duplication de gène (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Logiciel (MeSH)</term>
<term>Populus (génétique)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Souris (MeSH)</term>
<term>Voies et réseaux métaboliques (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Metabolic Networks and Pathways</term>
<term>Populus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
<term>Saccharomyces cerevisiae</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Protein Interaction Mapping</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
<term>Cartographie d'interactions entre protéines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Duplication</term>
<term>Humans</term>
<term>Mice</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Duplication de gène</term>
<term>Humains</term>
<term>Logiciel</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The large-scale identification of physical protein-protein interactions (PPIs) is an important step toward understanding how biological networks evolve and generate emergent phenotypes. However, experimental identification of PPIs is a laborious and error-prone process, and current methods of PPI prediction tend to be highly conservative or require large amounts of functional data that may not be available for newly-sequenced organisms.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study we demonstrate a random-forest based technique, ENTS, for the computational prediction of protein-protein interactions based only on primary sequence data. Our approach is able to efficiently predict interactions on a whole-genome scale for any eukaryotic organism, using pairwise combinations of conserved domains and predicted subcellular localization of proteins as input features. We present the first predicted interactome for the forest tree Populus trichocarpa in addition to the predicted interactomes for Saccharomyces cerevisiae, Homo sapiens, Mus musculus, and Arabidopsis thaliana. Comparing our approach to other PPI predictors, we find that ENTS performs comparably to or better than a number of existing approaches, including several that utilize a variety of functional information for their predictions. We also find that the predicted interactions are biologically meaningful, as indicated by similarity in functional annotations and enrichment of co-expressed genes in public microarray datasets. Furthermore, we demonstrate some of the biological insights that can be gained from these predicted interaction networks. We show that the predicted interactions yield informative groupings of P. trichocarpa metabolic pathways, literature-supported associations among human disease states, and theory-supported insight into the evolutionary dynamics of duplicated genes in paleopolyploid plants.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>We conclude that the ENTS classifier will be a valuable tool for the de novo annotation of genome sequences, providing initial clues about regulatory and metabolic network topology, and revealing relationships that are not immediately obvious from traditional homology-based annotations.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24015873</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS.</ArticleTitle>
<Pagination>
<MedlinePgn>608</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-14-608</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The large-scale identification of physical protein-protein interactions (PPIs) is an important step toward understanding how biological networks evolve and generate emergent phenotypes. However, experimental identification of PPIs is a laborious and error-prone process, and current methods of PPI prediction tend to be highly conservative or require large amounts of functional data that may not be available for newly-sequenced organisms.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this study we demonstrate a random-forest based technique, ENTS, for the computational prediction of protein-protein interactions based only on primary sequence data. Our approach is able to efficiently predict interactions on a whole-genome scale for any eukaryotic organism, using pairwise combinations of conserved domains and predicted subcellular localization of proteins as input features. We present the first predicted interactome for the forest tree Populus trichocarpa in addition to the predicted interactomes for Saccharomyces cerevisiae, Homo sapiens, Mus musculus, and Arabidopsis thaliana. Comparing our approach to other PPI predictors, we find that ENTS performs comparably to or better than a number of existing approaches, including several that utilize a variety of functional information for their predictions. We also find that the predicted interactions are biologically meaningful, as indicated by similarity in functional annotations and enrichment of co-expressed genes in public microarray datasets. Furthermore, we demonstrate some of the biological insights that can be gained from these predicted interaction networks. We show that the predicted interactions yield informative groupings of P. trichocarpa metabolic pathways, literature-supported associations among human disease states, and theory-supported insight into the evolutionary dynamics of duplicated genes in paleopolyploid plants.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">We conclude that the ENTS classifier will be a valuable tool for the de novo annotation of genome sequences, providing initial clues about regulatory and metabolic network topology, and revealing relationships that are not immediately obvious from traditional homology-based annotations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rodgers-Melnick</LastName>
<ForeName>Eli</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, Morgantown, West Virginia, 26506, USA. stephen.difazio@mail.wvu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Culp</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>DiFazio</LastName>
<ForeName>Stephen P</ForeName>
<Initials>SP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025941" MajorTopicYN="N">Protein Interaction Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24015873</ArticleId>
<ArticleId IdType="pii">1471-2164-14-608</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-14-608</ArticleId>
<ArticleId IdType="pmc">PMC3848842</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2001 Feb 15;409(6822):860-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):303-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Jul 1;19(10):1275-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12835272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bone Joint Surg Br. 1974 Aug;56B(3):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4421461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 9;432(7018):779-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15592419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Sep 23;122(6):957-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2005 Oct;128(Pt 10):2315-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15947064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2005 Aug;43(8):729-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16122935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Dec 15;21(24):4394-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16234318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16872538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Mar;25(3):309-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2007;3:89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17353931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17567909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Oct;145(2):317-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Dec;8(12):921-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18007649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D999-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17962307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Oct 3;322(5898):104-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18719252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Dec;18(12):1944-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D651-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18988626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Jan;6(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19116613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19498079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19563678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009;10:274</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19723330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Dec;14(12):680-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19818673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1479-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D744-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20947562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D1134-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20952401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D698-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D730-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21113022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Mar 18;144(6):986-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21414488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cir Pediatr. 2010 Oct;23(4):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21520553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):911-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jul 29;333(6042):601-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21798944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Oct 28;147(3):690-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22036573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D841-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22121220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Jan;22(1):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21974993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Mar 16;148(6):1223-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Apr;15(2):168-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22305522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Aug 31;150(5):1068-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22939629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014;4:4191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24569707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(1):54-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19925558</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Culp, Mark" sort="Culp, Mark" uniqKey="Culp M" first="Mark" last="Culp">Mark Culp</name>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Rodgers Melnick, Eli" sort="Rodgers Melnick, Eli" uniqKey="Rodgers Melnick E" first="Eli" last="Rodgers-Melnick">Eli Rodgers-Melnick</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002527 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002527 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24015873
   |texte=   Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24015873" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020